近日,广东工业大学环境健康与污染控制研究院、环境科学与工程学院安太成教授团队在催化大气浓度水平下臭氧灭活生物气溶胶方面取得最新研究进展,研究成果以《Enhanced catalytic ozonation inactivation of bioaerosols by MnO2/Ni foam with abundant oxygen vacancies and O3 at atmospheric concentration》为题发表在Applied Catalysis B: Environment and Energy (2024, 344, 123675)期刊上。论文的第一作者为博士生王海余,通讯作者为安太成教授。在这项工作中,作者构建了一个由三维多孔泡沫镍(NF)负载的二氧化锰(MnO2)整体式催化剂(MnO2/NF)。随后系统地研究了MnO2/NF催化大气浓度水平下臭氧(0.1 ppm)对生物气溶胶的灭活潜力。同时对MnO2/NF催化剂的微观形貌、晶体结构和表面化学状态进行了全面的分析,揭示了MnO2/NF催化大气浓度水平下臭氧的反应机理。最后通过监测细菌的氧化应激和膜损伤变化情况,提出了MnO2/NF催化大气浓度水平下臭氧灭活生物气溶胶的可能机理。该研究为催化臭氧催化氧化技术在削减生物气溶胶暴露风险方面拓展了新的发展方向。
论文网址:https://doi.org/10.1016/j.apcatb.2023.123675
臭氧催化氧化技术被认为是一种很有前景的生物气溶胶控制技术。然而低浓度的臭氧催化技术由于活性氧物种(ROSs)生成能力有限,导致对生物气溶胶灭活效果不理想。因此,为了提高低浓度臭氧灭活生物气溶胶的效率,本论文构建了一种由二氧化锰/泡沫镍与大气浓度水平下臭氧耦合而成的新型臭氧催化(MnO2/NF/O3)系统。研究结果显示,MnO2/NF/O3体系在~8秒的停留时间内对生物气溶胶的灭活效率可达到91%。此外,通过对MnO2/NF催化剂表面氧空位(OV)的定向调控,MnO2/NF/O3体系对生物气溶胶的灭活效率可进一步提高到99%。机理研究结果表明:MnO2/NF/O3体系对生物气溶胶高效的灭活效率主要是由于MnO2/NF催化剂表面丰富的OV能够作为反应活性位点催化大气浓度水平下臭氧快速转化为ROSs。具有较高氧化电位的ROSs可在短时间内快速攻击生物气溶胶,进而导致其中的细菌产生明显的氧化应激和膜损伤,随后失去活力。该研究在增强低浓度特别是大气浓度水平下臭氧对生物气溶胶的灭活效率的同时为设计高效的臭氧催化剂提供了更多的选择。
英文摘要
Catalytic ozonation is a promising bioaerosol control technology, as O3is prevalent in atmosphere. However, O3at atmosphere concentration has limited oxidation potential and reactive oxygen species (ROSs) production, leading incomplete bioaerosol inactivation. Therefore, a catalytic ozonation system with a manganese dioxide/Ni foam (MN) was prepared for efficient bioaerosol inactivation. The MN exhibited superior activity in catalytic ozonation bioaerosol inactivation, achieving 91.6% inactivation efficiency within 8.07 s at atmospheric concentration (0.1 ppm) of O3. The inactivation efficiency can be further improved to 99.0% by regulating surface oxygen vacancies (OV) in MN, which is mainly attributed to abundant OVof MN that facilitate rapid conversion of O3to other ROSs. Meanwhile, the mechanism of rapid bacterial inactivation was also clarified at cellular level, showing that ROSs caused bacterial oxidative stress. This catalytic ozonation strategy would offer more choices to design efficient O3catalysts for bioaerosol control and public health protection.
项目资助:
本研究得到国家重点研发项目(2023YFC3708204和2023YFC3708202)和国家自然科学基金(U1901210和42207112)的大力支持。
|