近日,广东工业大学环境科学与工程学院、环境健康与污染控制研究院安太成教授团队在国家基金委主办的Fundamental Research(2024, 4: 442-454)期刊上发表题为《Recent progress in online detection methods of bioaerosols》的特邀综述论文(https://doi.org/10.1016/j.fmre.2023.05.012)上。该论文是安太成教授受邀参加第304期双清论坛“大气中病毒和微生物传播的监测和预警”特邀在Fundamental Research期刊上出版专辑中的其中一篇论文。论文的第一作者和通讯作者为安太成教授,其他作者还包括梁志梳副教授、陈镇硕士生和李桂英教授等。
论文网址:https://doi.org/10.1016/j.fmre.2023.05.012
近年来爆发的新型冠状病毒疫情给人们的生命健康和财产安全造成了重大的损失,极大推动了生物气溶胶的检测研究。但生物气溶胶的复杂性、多样性和时空变异性及其非生物成分干扰对其在线检测产生了很大挑战。传统离线检测方法主要通过撞击法、滤膜法等采集生物气溶胶,并结合后续非常耗时的培养、电镜或者测序等方法进行分析,无法提供在线分析所具有的高时间分辨率等信息。因此,本综述系统总结了最常用的四种生物气溶胶在线检测方法,包括三磷酸腺苷(ATP)生物化学发光法、激光诱导荧光光谱法、拉曼光谱法和生物气溶胶质谱法的工作原理、特征、灵敏度和效率;并介绍了研究人员为了获得大量数据集和克服当前仪器局限而开发的一些新方法,探讨了未来各种检测技术和仪器的发展方向。经文献分析,我们发现ATP生物化学发光法具有简单、经济的特点,但无法从物种水平上区分微生物;激光诱导荧光方法虽然可以快速且无创检测生物气溶胶,但是易受到非生物荧光物质的干扰;拉曼光谱法和质谱法均可以实现低浓度微生物快速检测并区分生物气溶胶种类,但是由于价格昂贵且缺乏相关指纹图谱和数据库,因此短期内无法用于外场生物气溶胶的实际在线检测。本述综的研究结论可以为进一步优化生物气溶胶在线检测方法提供一定的文献指导和技术支撑。
图文摘要:
英文摘要:
The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.
资助项目:本研究得到了国家自然科学基金项目( U1901210、42177410和42130611)、广东省科技计划项目( 2021A0505030070 )、广东省珠江本土创新团队项目( 2017BT01Z032 )、广州市科技计划项目( 202201010689 )、广东省科协青年科技人才培养项目( 2022QNRC23 )的联合资助。