陈学松(教授)

硕士生导师

所在单位:数学与统计学院

性别:男

在职信息:在职

学科:计算数学
运筹学与控制论
应用数学

Generalized conjugate direction algorithm for solving general coupled Sylvester matrix equations

点击次数:

DOI码:10.1016/j.jfranklin.2023.08.022

发表刊物:Journal of the Franklin Institute

关键字:General coupled Sylvester matrix equations, generalized conjugate direction algorithm, least squares solution, inner product space

摘要:In this paper, a generalized conjugate direction algorithm (GCD) is proposed for solving general coupled Sylvester matrix equations. The GCD algorithm is an improved gradient algorithm, which can realize gradient descent by introducing matrices $P_{j}(k)$ and $T_{j}(k)$ to construct parameters $\alpha(k)$ and $\beta(k)$. The matrix $P_{j}(k)$ and $T_{j}(k)$ are iterated in a cross way to accelerate the convergence rate. In addition, it is further proved that the algorithm converges to the exact solution in finite iteration steps in the absence of round-off errors if the system is consistent. Also, the sufficient conditions for least squares solutions and the minimum F-norm solutions are obtained. Finally, numerical examples are given to demonstrate the effectiveness of the GCD algorithm.

第一作者:Zijian Zhang

论文类型:期刊论文

通讯作者:Xuesong Chen

卷号:360

期号:14

页面范围:10409-10432

是否译文:

发表时间:2023-09-05

收录刊物:SCI

发布期刊链接:https://doi.org/10.1016/j.jfranklin.2023.08.022

附件:

  • JFI-published.pdf

  • 上一条:A diagonal finite element-projection-proximal gradient algorithm for elliptic optimal control problem下一条:Time-optimal L1/L2 norms optimal control for linear time-invariant systems

    Baidu
    map